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R. Naidooa,b, S. Baboolalb,∗
a Department of Mathematics and Physics, Durban Institute of Technology, P.O. Box 1334, Durban 4000, South Africa
b Department of Computer Science, University of Durban-Westville, Private Bag X54001, Durban 4000, South Africa

Abstract

In this paper are outlined the details required in adapting the third-order semi-discrete numerical scheme of Kurganov and
Levy [SIAM J. Sci. Comput. 22 (2000) 1461] to handle hyperbolic systems which include source terms. The performance of
the scheme is then assessed against a fully discrete scheme, as well as against reference solutions on problems such as shock
propagation in a Broadwell gas and shocks in an Eulerian gas with heat transfer.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of concern in this work is the numer-
ical integration of

∂u(x, t)

∂t
+ ∂f(u(x, t))

∂x
= g(u(x, t)), (1)

a one-dimensional hyperbolic system of partial dif-
ferential equations. Hereu(x, t) is the unknown
m-dimensional vector function,f(u) the flux vector,
g(u) a continuous source vector function on the right
hand side (RHS), withx the single spatial coordinate
andt the temporal coordinate. Further, in the applica-
tions to follow we shall allow for the RHS the form
(1/ε)g(u(x, t)), where the parameterε > 0 distin-
guishes between stiff systems (ε � 1) and standard,
non-stiff ones (ε = 1).
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fax: +27-31-2044001.
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naidoor@yoda.cs.udw.ac.za (R. Naidoo).

Such equations can be used to model many physical
systems, including fluids and various types of gases.
In the last decade, particularly following the work
of Nessyahu and Tadmor[1], a family of fully dis-
crete, high-resolution, Riemann-solver-free schemes
have been produced in order to numerically solve hy-
perbolic systems such as the aforementioned. More
recently, also based on the same Riemann-solver-free
approach, second and third-order semi-discrete
schemes were devised by Kurganov and Tadmor[2]
and Kurganov and Levy[3]. One advantage of the
latter is that they can be applied on non-staggered
grids and thus ease the implementation of boundary
conditions. Here we are particularly interested in the
details of adapting the latter so that it be can applied
to systems with source terms including those that
are stiff. In order to assess the performance of this
scheme we examine its merits against an adaptation
[4] following [5] for non-staggered grids, of the fully
discrete scheme of[1] for systems with source terms,
as well as against exact or reference solutions for
two prototype problems. One such is the problem of
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shock propagation in a Broadwell gas[6,7] and the
other is that of shocks in a gas dynamics model with
heat transfer.

2. The modified numerical scheme

2.1. Kurganov–Levy scheme for nonlinear source
term

Here the numerical integration of problem(1) is
considered on some uniform spatial and temporal grids
with the spacings,�x = xj+1 − xj;�t=tn+1 − tn

(with j andn being suitable integer indices).
For the nonlinear homogeneous case of(1),

Kurganov and Levy [3] obtain the third-order
semi-discrete scheme:

dūj
dt

= − 1

2�x
[f(u+

j+1/2(t))+ f(u−
j+1/2(t))

−f(u+
j−1/2(t))− f(u−

j−1/2(t))]

−aj+1/2(t)

2�x
[u+
j+1/2(t)− u−

j+1/2(t)]

−aj−1/2(t)

2�x
[u+
j−1/2(t)− u−

j−1/2(t)], (2)

where

anj±1/2

=max

(
ρ

(
∂f

∂u
(u−
j±1/2(t))

)
, ρ

(
∂f

∂u
(u+
j±1/2(t))

))
(3)

and

u+
j±1/2 := Pj+1(xj±1/2, t

n),

u−
j±1/2 := Pj(xj±1/2, t

n). (4)

In the above, the forms(4) are, respectively, the left
and right intermediate values atxj±1/2 of a piece-
wise polynomial interpolantPj(x, tn) that fit an al-
ready computed or known cell average values{ūnj } at
time leveln. Also ρ(·) denotes the spectral radius of
the respective Jacobian, defining the maximum local
propagation speedsanj±1/2.

They also obtain an extension of the above
when the RHS of(1) is of the form ∂Q/∂x where
Q(u(x, t), ux(x, t)) is a dissipation flux satisfying a
parabolicity condition[3].

However, to allow for a source termg(u(x, t)) in (1)
we must proceed as outlined in[3] and follow through
the construction of the scheme with this added detail.
Thus, employing the above mentioned uniform spatial
and temporal grids and integrating(1) over the cell
I(x) := {ξ‖ξ − x| ≤ �x/2} gives

ūt + 1

�x

[
f

(
u

(
x+ �x

2
, t

))

−f
(
u

(
x− �x

2
, t

))]
= ḡ, (5)

where

ū(x, t) := 1

�x

∫
I(x)

u(ξ, t)dξ (6)

and

ḡ := 1

�x

∫
I(x)

g(u(ξ, t))dξ. (7)

Now assuming the{ūnj } are already computed or
known cell averages of the approximate solution at
time t = tn we integrate as in[3] over the control
volumes [xnj−1/2,R, x

n
j−1/2,L] × [tn, tn+1], [xnj−1/2,R,

xnj+1/2,L] × [tn, tn+1] and [xnj+1/2,L , x
n
j+1/2,R] ×

[tn, tn+1] where

xnj±1/2,L := xj±1/2 − anj±1/2�t,

xnj±1/2,R := xj±1/2 + anj±1/2�t (8)

with the piecewise polynomial form in the cellIj taken
as

Pj(x, t
n) = Aj + Bj(x− xj)+ 1

2Cj(x− xj)2, (9)

where the constantsAj, Bj, Cj are evaluated as in[3].
These then result, respectively, in the weighted aver-
agesw̄n+1

j−1/2, w̄
n+1
j , w̄n+1

j+1/2 which differ from those in
[3] only in the respective additive source terms:

1

2anj−1/2�t

∫ xj−1/2,R

xj−1/2,L

∫ tn+1

tn
g dx dt, (10)

1

�x−�t(anj−1/2 + anj+1/2)

∫ xj+1/2,L

xj−1/2,R

∫ tn+1

tn
g dx dt

(11)
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and

1

2anj+1/2�t

∫ xj+1/2,R

xj+1/2,L

∫ tn+1

tn
g dx dt. (12)

Then from the cell averages̄wn+1
j±1/2 and w̄n+1

j are
reconstructed third-order piecewise polynomials[3]
taken as

w̃n+1
j±1/2(x) = Ãj±1/2 + B̃j±1/2(x− xj±1/2)

+1
2C̃j±1/2(x− xj±1/2)

2,

w̃n+1
j (x) ≡ w̄n+1

j , (13)

where the constants̃Aj, B̃j andC̃j are evaluated as in
[3]. The new cell averages on the unstaggered grids
are obtained from these polynomials by[3]

ūn+1
j = 1

�x

[∫ xj−1/2,R

xj−1/2

w̃n+1
j−1/2 dx+

∫ xj+1/2,L

xj−1/2,R

w̃n+1
j dx

+
∫ xj+1/2

xj+1/2,L

w̃n+1
j+1/2 dx

]
. (14)

The semi-discrete form is then defined by the limit

dūj(t)

dt
= lim
�t→0

ūn+1
j − ūnj
�t

. (15)

Proceeding with(13) and (14)as in[3], the coefficients
in the polynomial form simplify resulting in

dūj
dt

= − 1

2�x
[f(u+

j+1/2(t))+ f(u−
j+1/2(t))

−f(u+
j−1/2(t))− f(u−

j−1/2(t))]

−aj+1/2(t)

2�x
[u+
j+1/2(t)− u−

j+1/2(t)]

−aj−1/2(t)

2�x
[u+
j−1/2(t)− u−

j−1/2(t)]

+ lim
�t→0

1

2�x�t

∫ tn+1

tn

∫ xj−1/2,R

xj−1/2,L

g dx dt

+ lim
�t→0

1

2�x�t

∫ tn+1

tn

∫ xj+1/2,R

xj+1/2,L

g dx dt

+ lim
�t→0

1

�t(�x−�t(aj+1/2 + aj−1/2))

×
∫ tn+1

tn

∫ xj+1/2,L

xj−1/2,R

g dx dt. (16)

We note that the non-smooth parts of the solution are
contained over spatial widths of size 2anj±1/2�t. Full
details with clear sketches are given in[3]. Now, when
the limits are taken on the source integrals, the first
two vanish as the Riemann fans shrink to zero, since,
for example:

xj+1/2,L = xj+1/2 − aj+1/2�t → xj+1/2.

At the same time, sincēun = ū(t) (and henceg) is a
constant over this cell, it can be shown for the other
that

lim
�t→0

1

�t(�x−�t(aj+1/2 + aj−1/2))

×
∫ tn+1

tn

∫ xj+1/2,L

xj−1/2,R

g dx dt = g(unj ).

Hence the modified semi-discrete scheme with source
termg(u(x, t)) is

dūj
dt

= − 1

2�x
[f(u+

j+1/2(t))+ f(u−
j+1/2(t))

−f(u+
j−1/2(t))− f(u−

j−1/2(t))]

−aj+1/2(t)

2�x
[u+
j+1/2(t)− u−

j+1/2(t)]

−aj−1/2(t)

2�x
[u+
j−1/2(t)− u−

j−1/2(t)]

+g(uj(t)), (17)

where the rest of the terms are as in(3) and (4).
To compute with(17), it is convenient to use ODE

system solvers, such as Runge–Kutta formulae. For
instance, writing(17) in the form:

duj
dt

= Fj, (18)

whereFj is the vector of the RHS, we can employ the
second-order (in time) Runge–Kutta (RK2) or modi-
fied Euler scheme[8] for it as

RK2 :



U(1) = Un +�tF(Un),

U(2) = 1
2U

n + 1
2[U(1) +�tF(U(1))],

Un+1 = U(2),
(19)

whereU denotes the vector of componentsuj, the
superscriptn andn+ 1 denote successive time levels,
whilst the others (1, 2) denote intermediate values.
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We shall refer to the scheme(17) with RK2 (19) as
the SD3 scheme. We note that such a scheme is gen-
erally third order (in space) except in regions of steep
gradients when it degrades to order two[3]. However,
when the scheme is coupled with RK2, as here, the
overall method is second order. It then makes sense
when we compare its performance to that of the fully
discrete second-order scheme (NNT) for systems with
source terms for integration on unstaggered grids[4]:

ūn+1
j = 1

4(ū
n
j+1 + 2ūnj + ūnj−1)− 1

16(u
n
xj+1 − unxj−1)

−1
8[un+1

xj+1/2 − un+1
xj−1/2] + 1

8�t[g(u
n
j+1)

+2g(unj )+ g(unj−1)] + 1
8�t[g(u

n+1
j+1)

+2g(un+1
j )+ g(un+1

j−1)] − 1
4λ[(f nj+1 − fnj−1)

+(f n+1
j+1 − fn+1

j−1 )], (20)

whereλ = �t/�x and the subscriptx denotes dif-
ferentiation with respect tox. This scheme has been
obtained by modifying that of[1], following the pre-
scription given in [5], but additionally taking into
account a source term. Full details however, are left to
another report[4]. Furthermore, we shall employ the
scheme(20) in conjunction with the UNO derivative
approximation[1]:

uxj = MM (uj − uj−1 + 1
2MM (uj − 2uj−1

+ uj−2, uj+1 − 2uj + uj−1),

uj+1 − uj − 1
2MM (uj+1 − 2uj

+ uj−1, uj+2 − 2uj+1 + uj)), (21)

where the function MM(·) is the min-mod nonlinear
limiter defined by

MM (s1, s2, . . . ) =




min{sj} if sj > 0 ∀ j,
max{sj} if sj < 0 ∀ j,
0 otherwise.

(22)

2.2. Implementation details

The implementation of the NNT scheme(20)above
follows previous reports[1,4], where in particular we
mention that the source term can make the scheme
implicit. The latter then requires fixed-point type iter-
ations to convergence at each grid point at every time
level.

The SD3 scheme is, however, explicit in time. Thus
the implementation of(17) follows closely the pre-
scription given in[3] where in particular we use for
the non-oscillatory piece-wise polynomial(9) their
CWENO reconstruction[3] given by

Aj = ūnj − 1
12WC(ū

n
j+1 − 2ūnj + ūnj−1), (23)

Bj = 1

�x

[
WR(ū

n
j+1 − ūnj )+

WC

2
(ūnj+1 − ūnj−1)

+WL(ū
n
j − ūnj−1)

]
, (24)

Cj = WC

�x2
(ūnj−1 − 2ūnj + ūnj+1). (25)

Here the constantsWL ,WC andWR are determined
by their equation (2.9) and involve heuristic factors
which have a bearing on the sharpness of the slopes
near discontinuities.

In addition, it is required to compute at every time
step the spectral radii(3) of the Jacobians of the flux
terms, which we obtained exactly for the small test
systems to follow.

3. Applications and tests

3.1. Shocks in a Broadwell gas

Here we solve the governing equations for a Broad-
well gas[6,7]:

∂ρ

∂t
+ ∂m

∂x
= 0, (26)

∂m

∂t
+ ∂z

∂x
= 0, (27)

∂z

∂t
+ ∂m

∂x
= 1

ε
(ρ2 +m2 − 2ρz), (28)

where ε is the mean free path andρ(x, t), u(x, t),
m(x, t) ≡ ρ(x, t)u(x, t), z(x, t) the density, flow veloc-
ity, momentum and flux, respectively. The rangeε =
1 · · · 10−8 cover the regime from the non-stiff to the
highly stiff. In particular, the limitε = 10−8 requires
a renormalization of the variables such as in the form

x̄ = 1

ε
x, t̄ = 1

ε
t
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followed by computations on an equivalent finer grid
(see, for example,[9]).

We observe that in the limitε→ 0 we arrive at

z = zE(ρ,m) = 1

2ρ
(ρ2 +m2), (29)

which leads to the equilibrium solution of the govern-
ing equations above which then reduce to the Euler
equations.

The SD3(17) and NNT(20) schemes were applied
to the above with the two sets (Rim1 andRim2) of
initial conditions (applied att = 0) corresponding to
several Riemann problems, each distinguished by a
specificε-value:

Rim1 :

{
ρ = 2,m = 1, z = 1, x < xJ ,

ρ = 1,m = 0.13962, z = 1, x > xJ ,

Rim2 :

{
ρ = 1,m = 0, z = 1, x < xJ ,

ρ = 0.2,m = 0, z = 1, x > xJ .

In all calculations absorbing boundary conditions were
employed, where in particular, the boundary values
were obtained by quadratic extrapolations of internal
point values on a fixed spatial grid, over an integration
domain on theX-axis. Results obtained are depicted
in Fig. 1.

Other parameters used here were�x = 0.01,�t =
0.005, xJ = 5 in (a) and (b) and�x = 0.02,�t =
0.001, xJ = 10 in (c) and (d) for both methods. We
observe that in virtually all cases, the semi-discrete
scheme gives better results than the modified NNT
scheme.

3.2. Shocks in an Eulerian gas with heat transfer

Here we solve the Euler equations for the
one-dimensional flow of a gas in contact with a con-
stant temperature bath[10]:

∂ρ

∂t
+ ∂(ρu)

∂x
= 0,

∂(ρu)

∂t
+ ∂(ρu2 + p)

∂x
= 0,

∂(ρE)

∂t
+ ∂(ρuE + up)

∂x
= −Kρ(T − T0).

Theρ, u, e, T,E = e+(1/2)u2 andp = (γ−1)ρe are
the density, flow velocity, internal energy, temperature
in units of e, total energy and pressure, respectively,

with K > 0 the heat transfer coefficient andT0 the
constant bath temperature, taken as 1 (i.e.e as in[10]).

The initial conditions (att = 0) used were

Rim3 :

{
ρ = 2.5, u = 1.0, p = 1.0, x < 50,

ρ = 1.0, u = 0.4, p = 0.4, x > 50,

where differentK = 1,50,400,1000 are employed.
Computed results with SD3 and NNT are shown in
Fig. 2.

In these we observe that SD3 captures the shocks
significantly better than does NNT. The oscillations
seen in the small and largeK regimes have also been
observed by Pember[10], employing a Godunov type
frozen characteristic method. In his study it was found
that when the actual wave speed lies closer to the
equilibrium (∼K → ∞, T → T0) characteristic speed
or lies closer to the frozen (∼K → 0) characteristic
speed then an ambiguity can arise in the use of the full
set of model equations with 0< K <∞. This causes
the relaxation times at either ends to tend to become
non-resolvable, resulting in non-physical oscillations
near discontinuities. In comparison, we observe that
the NNT curves generally show poor resolution of the
shocks, and moreover far more dissipation, as expected
when�t ∼ (�x)2 [3].

3.3. Convergence rates and complexity

It is of interest to compare the methods in terms
of their relative convergence rates and complexi-
ties. For the former exercise we employed as a test
problem the Broadwellequations (26)–(28)with
ε = 1 and computed smooth solutions correspond-
ing to the same boundary conditions and the initial
conditions:

ρ(x,0) = 1 + aρ sin
2πx

L
,

u(x,0) = 1

2
+ aρ sin

2πx

L
,

m(x,0) = ρ(x,0)u(x,0),
z(x,0) = 0.2zE(ρ(x,0),m(x,0)), (30)

wherezE is given by(29)andL = 20, aρ = 0.3, av =
0.1,�t/�x = 5/6 with the final time set toT = 5.

We employed successively the number of grid
points N = 100,200,400 and took the refined
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Fig. 1. Broadwell gas shock solutions with: (a)ε = 1 (Rim1); (b) ε = 0.02 (Rim1); (c) ε = 10−8 (Rim1); (d) ε = 10−8 (Rim2). Here the
curve labeled 1∼ ρ, 2 ∼ z, 3 ∼ m. The snap-shot time ist = 0.5 in all cases. The heavy lines are computed solutions and the thin lines
are ‘exact’ or refined grid solutions obtained by reducing the time and space steps by a factor of 10.
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Fig. 2. Shocks in an Eulerian gas with heat transfer. The curve labeled 1∼ ρE,2 ∼ ρ,3 ∼ ρu. The grid lengths of�x = 0.1 and
�t = 0.001 were used for both methods. The output time ist = 0.4 in all cases. Again the heavy lines are computed solutions and the
thin lines are ‘exact’ solutions, obtained as forFig. 1.



472 R. Naidoo, S. Baboolal / Future Generation Computer Systems 20 (2004) 465–473

Table 1
Convergence rates for the NNT and SD3 schemes

N L∞ error CRi

NNT
100 0.151188 –
200 0.023043 2.72
400 0.0055693 2.06

SD3
100 0.114549 –
200 0.015966 2.85
400 0.001880 3.10

Table 2
CPU times (s) for the NNT and SD3 schemes

N NNT SD3

100 0.11 0.17
200 0.33 0.38
400 1.10 1.15
800 3.63 3.90

(exact) solution as that given byN = 800. Then the
convergence rate (CRi) was computed by the formula

CRi = log(errori/errori+1)

log(�xi/�xi+1)
, (31)

where errori, for example, is the absoluteL∞ norm
error corresponding to the refinementi. For both meth-
ods the results are displayed inTable 1.

We observe that the SD3 scheme, for largerN, tends
to approach a third-order scheme, whilst the NNT is
clearly second-order, as expected.

As far as the complexities of the two schemes are
concerned, we computed the CPU times for the same
problem given above with results depicted inTable 2.
We observe that SD3 takes some 8–10% more com-
putation time than NNT for larger problems. This is
in spite of the explicit nature of SD3. We attribute the
larger times to the CWENO construction(23)–(25)as
well as the Runge–Kutta function updates in(19). For
the NNT, although implicit in time, we find rapid con-
vergence (2–3 iterations only). A significant amount
of time here is spent on UNO derivative calculations
(21) required in(20), which in contrast are not re-
quired explicitly in SD3.

4. Conclusion

We have indicated in this work, how the third-order
semi-discrete numerical scheme of Kurganov and
Levy [3] can be suitably adapted to include source
terms in one-dimensional hyperbolic systems. Results
obtained with it on shock propagation in a Broad-
well gas and in a gas dynamics model with heat
transfer show that in some cases it performs bet-
ter than the fully discrete modification for systems
with source terms[4]. In others, their accuracies are
similar. Further, whilst the convergence rate for the
explicit Kurganov–Levy scheme is superior to the
implicit NNT scheme, it has been shown to be around
10% more computationally expensive than the NNT
scheme for problems on moderate to large size grids.
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